

GRAHAM'S CONJECTURE ON $Z Z_{n}\left(C_{2 k}\right) \times G$

A. Lourdusamy ${ }^{1^{*}}$ and J. Jenifer Steffi ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai - 627 002, Tamil Nadu, India.
${ }^{1}$ E-mail: lourdusamy15@gmail.com
${ }^{2}$ E-mail: jenifersteffi.j@gmail.com
Received: December 2017 Accepted: January 2018

Abstract

The pebbling number of a graph $G, f(G)$, is the least m such that, however m pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of pebbling moves, each move taking two pebbles from one vertex and placing one on an adjacent vertex. We say that G satisfies the 2 -pebbling property if for any distribution with more than $2 f(G)-q$ pebbles, it is possible to move two pebbles to any specified vertex. Graham conjectured that for all graphs G and H, $f(G \times H) \leq f(G) f(H)$. Let $Z Z_{n}\left(C_{2 k}\right)$ be the zig zag chain graph of n copies of even cycles and let G be any graph with $2-$ pebbling property. We prove that $f\left(Z Z_{n}\left(C_{2 k}\right) \times\right.$ $G) \leq f\left(Z Z_{n}\left(C_{2 k}\right)\right) f(G)$ for all $n \geq 2$.

Keywords: Graph Pebbling, Zig-zag chain graph.

2010 Mathematics Subject Classification: 05C99

1. InTRODUCTION

Throughout this paper, unless stated otherwise, G will denote a simple connected graph. Suppose p pebbles are distributed onto the vertices of a graph G. A pebbling move consists of removing two pebbles from some vertex and adding one on an adjacent vertex. we say a pebble can be moved to a vertex v, the target vertex, if we can apply pebbling moves repeatedly so that in the resulting distribution we can move a pebble to the vertex v. To understand the pebbling concepts, we need the following definitions.

Definition 1.1. [1] [5] The pebbling number of a vertex v in G is the smallest number $f(G, v)$ such that every placement of $f(G, v)$ pebbles, it is possible to move a pebble to v by a sequence
of pebbling moves. Also, we define the t-pebbling number of v in G is the smallest number $f_{t}(G, v)$ such that from every placement of $f_{t}(G, v)$ pebbles, it is possible to move t pebbles to the vertex v.

The pebbling number of G and the t-pebbling number of G are the smallest numbers, $f(G)$ and $f_{t}(G)$, such that from any placement of $f(G)$ pebbles or $f_{t}(G)$ pebbles, respectively, it is possible to move one or pebbles, respectively, to any target vertex by a sequence of pebbling moves. Thus, $f(G)$ and $f_{t}(G)$ are the maximum values of $f(G, v)$ and $f_{t}(G, v)$ over all vertices v.
(1) For any vertex v of a graph $G, f(G, v) \geq n$ where $n=|V(G)|$
(2) The pebbling number of a graph G satisfies $f(G) \geq \max \left\{2^{\operatorname{diam}(G)},|V(G)|\right\}$, where $\operatorname{diam}(G)$ is the diameter of the graph G.

Definition 1.2. [1] [7] Let D be a distribution of pebbles on G, let q be the number of vertices with at least one pebble. We say that G satisfies the 2 - pebbling property if for any distribution with more than $2 f(G)-q$ pebbles, it is possible to move two pebbles to any specified vertex.

Further, we say that a graph G has the $2 t$-pebbling property, iffor any distribution with more than $2 f_{t}(G)-q$ pebbles, it is possible to move $2 t$ pebbles to any specified vertex.

The Cartesian product of G and H is denoted by $G \times H$. The following well-known conjecture is first appeared in [1].

Conjecture 1.3. [1] For any connected graphs G and $H, f(G \times H) \leq f(G) f(H)$.
Many articles (See, e.g.,[1],[2],[6] and [11]) have given evidence supporting Conjecture 1.3.In this paper we verified this conjecture is true for the product of zig-zag chain graph of n copies of even cycles, $Z Z_{n}\left(C_{2 k}\right)$ and the graph G with 2 -pebbling property. Further, Lourdusamy extended Conjecture 1.3 as follows.

Conjecture 1.4. [7] For any connected graphs G and $H, f_{t}(G \times H) \leq f_{t}(G) f(H)$
This paper is organized as follows. In Section 2, we give some preliminary pebbling results and definitions on zig-zag chain graph of n copies of even cycles. In section 3 , we provide some lemmas that will be used in the proof of main results. In Section 4, we verify that Graham's Conjecture is true for the Cartesian product of zig-zag chain graph of n copies of even cycles and the graph G with 2-pebbling property.

2. Preliminaries

Definition 2.1. [10] The zig-zag chain graph of n copies of even cycles denoted by $Z Z_{n}\left(C_{2 k}\right)$, is a graph which consists of zig-zag sequence of n even cycles, $C_{2 k}$ with $k \geq 3$. We have the following vertex set and edge set of $Z Z_{n}\left(C_{2 k}\right)$ for n even as follows.

$$
\begin{aligned}
& V\left(Z Z_{n}\left(C_{2 k}\right)\right)=\left\{a_{i}, b_{i}: 1 \leq i \leq n(k-1)\right\} \cup\{x, y\} \text { and } \\
& E\left(Z Z_{n}\left(C_{2 k}\right)\right)=\left\{a_{i} a_{i+1}, b_{i} b_{i+1}: 1 \leq i \leq n(k-1)-1\right\} \cup\left\{x a_{1}, x b_{1}, y a_{n(k-1)}, y b_{n(k-1)}\right\} \cup
\end{aligned}
$$

$$
\left\{a_{(k+1) i-1} b_{(k+1) i-2}, a_{(k+1) j} b_{(k+1) j+1}: 1 \leq i \leq \frac{n}{2}, 1 \leq j \leq\left(\frac{n}{2}-1\right)\right\}
$$

For n odd, we have the following vertex set and edge set.

$$
\begin{aligned}
V\left(Z Z_{n}\left(C_{2 k}\right)\right)= & \left\{a_{i}, b_{i}: 1 \leq i \leq n(k-1)\right\} \cup\{x, y\} \text { and } \\
E\left(Z Z_{n}\left(C_{2 k}\right)\right)= & \left\{a_{i} a_{i+1}, b_{i} b_{i+1}: 1 \leq i \leq n(k-1)-1\right\} \cup\left\{x a_{1}, x b_{1}, y a_{n(k-1)}, y b_{n(k-1)}\right\} \cup \\
& \left\{a_{(k+1) i-1} b_{(k+1) i-2}, a_{(k+1) j} b_{(k+1) j+1}: 1 \leq i, j \leq \frac{n-1}{2}\right\} .
\end{aligned}
$$

The reader can easily view that $Z Z_{n}\left(C_{2 k}\right)$ has n copies of $C_{2 k}$, and label each cycle as A_{1}, A_{2}, \ldots, and A_{n} in order. Here, we present some results that will be used in the proof of main results.

Theorem 2.2. [7] Let P_{n} be the path with n vertices. Then
(1) $f_{t}\left(P_{n}\right)=t 2^{n-1}$ and
(2) P_{n} satisfies the $2 t$-pebbling property.

Theorem 2.3. [8] [9] Let $C_{2 k}$ denote a simple cycle with $2 k$ vertices, where $n \geq 3$. Then

$$
f_{t}\left(C_{2 k}\right)= \begin{cases}t 2^{k}, & n \text { is even } \tag{1}\\ \frac{2^{k+2}-(-1)^{k+2}}{3}+(t-1) 2^{k}, & n \text { is odd }\end{cases}
$$

(2) The graph $C_{2 k}$ satisfies the $2 t$-pebbling property.

Theorem 2.4. [10] Let $Z Z_{n}\left(C_{2 k}\right)$ be the zig-zag chain graph of n copies of even cycles. Then we have $f_{t}\left(Z Z_{n}\left(C_{2 k}\right)\right)=t .2^{n(k-1)}$.

Theorem 2.5. [7] Let P_{n} be the path with n vertices and let G be the graph with $2 t$-pebbling property. We have $f_{t}\left(P_{n} \times G\right) \leq f_{t}\left(P_{n}\right) f(G)$.

Theorem 2.6. Let $C_{2 k}$ be the cycle with $2 k$ vertices and let G be the graph with $2 t$-pebbling property. We have $f_{t}\left(C_{2 k} \times G\right) \leq f_{t}\left(C_{2 k}\right) f(G)$.

3. Useful Lemmas

In this section, we provide some lemmas which will be used in main results.
Lemma 3.1. Let $Z Z_{2}\left(C_{2 k}\right)$ be the zig-zag chain graph of two copies of even cycles and let G be the graph with $2-$ pebbling property. Suppose at least $\left(2^{2 k-1}-2^{k}\right) f(G)$ pebbles distributed only on the vertices of $A_{1} \times G$. Then we can move at least $\left(2^{k-1}-1\right)$ pebbles to $\left\{a_{k}\right\} \times G$.

Proof. Consider the graph $Z Z_{2}\left(C_{2 k}\right)$ with at least $\left(2^{2 k-1}-2^{k}\right) f(G)$ pebbles distributed only on the vertices of $A_{1} \times G$. We have to move at least $\left(2^{k-1}-1\right)$ pebbles to $\left\{a_{k}\right\} \times G$. Clearly, $A_{1} \times G \cong C_{2 k} \times G$ and recall that $f_{t}\left(C_{2 k} \times G\right) \leq f_{t}\left(C_{2 k}\right) f(G)$. Therefore we can move at least $\left(2^{k-1}-1\right)$ pebbles to $\left\{a_{k}\right\} \times G$.

Lemma 3.2. Let $Z Z_{3}\left(C_{2 k}\right)$ be the zig-zag chain graph of three copies of even cycles and let G be the graph with 2 -pebbling property. Suppose at least $\left(2^{3(k-1)+1}-2^{k}\right) f(G)$ pebbles distributed only on the vertices of $\left(A_{1} \cup A_{2}\right) \times G$. Then we can move at least $\left(2^{k-1}-1\right)$ pebbles to $\left\{a_{2 k-2}\right\} \times G$.
Proof. Consider the graph $Z Z_{3}\left(C_{2 k}\right)$ with at least $\left(2^{3 k-2}-2^{k}\right) f(G)$ pebbles distributed only on the vertices of $\left(A_{1} \cup A_{2}\right) \times G$. We have to move at least $\left(2^{k-1}-1\right)$ pebbles to $\left\{a_{2 k-2}\right\} \times G$. Suppose at least $\left(2^{2 k-1}-2^{k}\right) f(G)$ pebbles distributed on the vertices of $A_{2} \times G$. Then by Lemma 3.1, we can move at least $\left(2^{k-1}-1\right)$ pebbles to $\left\{a_{2 k-2}\right\} \times G$. Therefore assume that $p\left(A_{2} \times G\right)<\left(2^{2 k-1}-2^{k}\right) f(G)$. Then the number of pebbles retained on $A_{1} \times G$ is at least $\left(2^{3 k-2}-2^{2 k-1}\right) f(G)$. Then we claim the following:

$$
\operatorname{Claim}(1): p\left(A_{1} \times G\right) \geq 2^{k}\left[2^{k-2}\left(2^{k-1}-1\right)\right] f(G)
$$

We have, $\left(2^{3 k-2}-2^{2 k-1}\right) f(G)-2^{k}\left[2^{k-2}\left(2^{k-1}-1\right)\right] f(G)$

$$
\begin{aligned}
& =\left(2^{3 k-2}-2^{2 k-1}-2^{3 k-3}+2^{2 k-2}\right) f(G) \\
& =\left(2^{3 k-3}-2^{2 k-2}\right) f(G) \\
& >0, \text { since } k \geq 3
\end{aligned}
$$

Hence we can move at least $2^{k-2}\left(2^{k-1}-1\right)$ pebbles to $\left\{a_{k}\right\} \times G$. Now, we have subgraph $A:\left\{a_{k}, a_{k+1}, \ldots, a_{2 k-2}\right\} f(G) \cong P_{k-1} \times G$. Then by Theorem 2.2, we can move at least $\left(2^{k-1}-1\right)$ pebbles to $\left\{a_{2 k-2}\right\} \times G$.

Lemma 3.3. Let $Z Z_{n}\left(C_{2 k}\right)$ be the zig-zag chain graph of n copies of even cycles and let G be the graph with 2 -pebbling property. Suppose at least $\left(2^{n(k-1)+1}\right) f(G)$ pebbles distributed only on the vertices of $\left\{A_{1} \cup \ldots \cup A_{n-1}\right\} \times G$. Then we can move at least $\left(2^{k-1}-1\right)$ pebbles to $\left\{a_{(n-1)(k-1)}\right\} \times G$.
Proof. We prove this lemma by induction. For $n=2$ and $n=3$, the results follow from Lemma 3.1 and Lemma 3.2. Assume that the result is true for all $n^{\prime}<n$. Consider the graph $Z Z_{n}\left(C_{2 k}\right)$ with at least $\left(2^{n(k-1)+1}\right) f(G)$ pebbles distributed only on the vertices of $\left\{A_{1} \cup \ldots \cup\right.$ $\left.A_{n-1}\right\} \times G$. We have to move at least $\left(2^{k-1}-1\right)$ pebbles to $\left\{a_{(n-1)(k-1)}\right\} \times G$. Suppose at least $\left(2^{(n-1)(k-1)+1}-2^{k}\right) f(G)$ pebbles distributed on the vertices of $\left(A_{2} \cup \ldots \cup A_{n-1}\right) f(G)$. Then by induction, we can move at least $\left(2^{k-1}-1\right)$ pebbles to $\left\{a_{2 k-2}\right\} \times G$. Therefore assume that $p\left(\left(A_{2} \cup \ldots \cup A_{n-1}\right) \times G\right)<\left(2^{(n-1)(k-1)+1}-2^{k}\right) f(G)$. Then the number of pebbles retained on $A_{1} \times G$ is at least $\left(2^{n(k-1)+1}-2^{(n-1)(k-1)+1}\right) f(G)$. We claim the following:

$$
\operatorname{Claim}(2): p\left(A_{1} \times G\right) \geq 2^{k}\left[2^{n(k-1)-2 k+1}\left(2^{k-1}-1\right)\right] f(G)
$$

We have,

$$
\begin{aligned}
& \left(2^{n(k-1)+1}-2^{(n-1)(k-1)+1}\right) f(G)-2^{k}\left[2^{n(k-1)-2 k+1\left(2^{k-1}-1\right)}\right] f(G) \\
& \quad=\left(2^{n(k-1)+1}-2^{(n-1)(k-1)+1}-2^{n(k-1)-k+1\left(2^{k-1}-1\right)}\right) f(G) \\
& \quad=\left(2^{n(k-1)+1}-2^{(n-1)(k-1)+1}-2^{n(k-1)}+2^{n(k-1)-k+1}\right) f(G) \\
& \quad=\left(2^{n(k-1)}-2^{n(k-1)-k}\right) f(G) \\
& \quad>0
\end{aligned}
$$

Hence we can move at least $2^{n(k-1)-2 k+1}\left(2^{k-1}-1\right)$ pebbles to $\left\{a_{k}\right\} \times G$. Now, we have subgraph $B:\left\{a_{k}, \ldots, a_{(n-1)(k-1)}\right\} \times G \cong P_{n(k-1)-2 k+2} \times G$. Then by Theorem 2.2, we can move at least $\left(2^{k-1}-1\right)$ pebbles to $\left\{a_{(n-1)(k-1)}\right\} \times G$.

4. Main results:

In this section, we verify that Graham's conjecture is true for the product of zig-zag chain graph of n copies of even cycles and a graph G satisfies the 2 -pebbling property.

Theorem 4.1. Let $Z Z_{2}\left(C_{2 k}\right)$ be the zig-zag chain graph of n copies of even cycles and let G be the graph with $2-$ pebbling property. Then

$$
f\left(Z Z_{2}\left(C_{2 k}\right) \times G\right) \leq f\left(Z Z_{2}\left(C_{2 k}\right)\right) f(G)
$$

Proof. Consider the graph $Z Z_{2}\left(C_{2 k}\right) \times G$ with at least $2^{2 k-1} f(G)$ pebbles distributed on its vertices. Let $(m, n)=v \in Z Z_{2}\left(C_{2 k}\right) \times G$ be out target vertex. Here, $m \in Z Z_{2}\left(C_{2 k}\right)$ and $n \in G$. Let p_{m} denote the number of pebbles placed on the vertices of $\{m\} \times G$ and let q_{m} denote the number of occupied vertices in $\{m\} \times G$. Without loss of generality, assume that $v \in A_{2} \times G$. We consider the following cases:

Case 1. Let $v \in\left(V\left(A_{2}\right)-\left\{y, b_{2(k-1)}\right\} \times G\right)$

Fix $v=\left(a_{i}, z\right), k \leq i \leq 2(k-1)$. Clearly, $A_{2} \times G \cong C_{2 k} \times G$. Suppose $p\left(A_{2} \times G\right) \geq$ $2^{k} f(G)$.Then by Theorem2.3, we can reach the target. So assume that $p\left(A_{2} \times G\right)<2^{k} f(G)$. Then the number of pebbles retained on $A_{1} \times G$ is at least $\left(2^{2 k-1}-2^{k}\right) f(G)$. By Lemma 3.1, we can move at least $\left(2^{k-1}-1\right)$ pebbles to $\left(a_{k}, z\right)$ and by Theorem 2.2, we can move one pebble to the target vertex.

Case 2. Let $v \in\left\{y, b_{2(k-1)}\right\} \times G$

Without loss of generality, assume that $v \in\{y\} \times G$. Fix $v=(y, z)$. Now we have two subgraphs $I=\left\{a_{k}, a_{k+1}, \ldots, y\right\} \times G$ and $J=\left\{b_{k}, b_{k+1}, \ldots, y\right\} \times G$ which are isomorphic to $P_{k-1} \times G$. Suppose $p(I) \geq 2^{k-2} f(G)$ or $p(J) \geq 2^{k-2} f(G)$. Then we can reach the target. Otherwise, assume that $p(I)<2^{k-2} f(G)$ and $p(J)<2^{k-2} f(G)$. Without loss of generality,
assume that all the pebbles are distributed only on the vertices of $A_{1} \times G$. Then by Lemma 3.1, we can move at least $\left(2^{k-1}-1\right)$ pebbles to the vertex $\left(a_{k}, z\right)$ by using exactly $\left(2^{2 k-1}-2^{k}\right) f(G)$ pebbles. But the number of pebbles retained on $A_{1} \times G$ is at least $2^{k} f(G)$. Therefore, we can move an additional pebble to the vertex $\left(a_{k}, z\right)$. Now by using the subgraph I, we can move a pebble to the vertex (y, z).

Theorem 4.2. Let $Z Z_{3}\left(C_{2 k}\right)$ be the zig-zag chain graph of three copies of even cycles and let G be the graph with $2-$ pebbling property. Then

$$
f\left(Z Z_{3}\left(C_{2 k}\right) \times G\right) \leq f\left(Z Z_{3}\left(C_{2 k}\right)\right) f(G)
$$

Proof. Consider the graph $Z Z_{3}\left(C_{2 k}\right) \times G$ with at least $2^{3 k-2} f(G)$ pebbles on the vertices. Let $v=(m, n) \in Z Z_{3}\left(C_{2 k}\right) \times G$ be our target vertex. Here, $m \in Z Z_{3}\left(C_{2 k}\right)$ and $n \in G$. Let p_{m} denote the number of pebbles in $\{m\} \times G$ and let q_{m} denote the number of occupied vertices in $\{m\} \times G$. Without loss of generality, assume that $v \in A_{t} \times G, 1 \leq t \leq 3$. We consider the following cases:

Case 1. Let $v \in A_{2} \times G$.
Suppose $p\left(\left(A_{2} \cup A_{3}\right) \times G\right) \geq 2^{2 k-1} f(G)$.Then the number of pebbles retained on $A_{1} \times G$ is at least $2^{2 k-1} f(G)$. Therefore $p\left(\left(A_{1} \cup A_{2}\right) \times G\right) \geq 2^{2 k-1} f(G)$. Again by Theorem 4.1, we can reach the target.

Case 2. Let $v \in A_{1} \times G$ or $v \in A_{3} \times G$.

Without loss of generality, let us take $v \in A_{3} \times G$ and $p\left(A_{3} \times G\right)<2^{k} f(G)$. Then the number of pebbles distributed on the vertices of $\left(A_{1} \cup A_{2}\right) \times G$ is at least $\left(2^{3 k-2}-2^{k}\right) f(G)$. We consider the following subcases:

Subcase 2(a). Let $v \in\left(A_{3}-\left\{y, a_{3(k-1)}\right\}\right) \times G$
Without loss of generality, we assume that $v=\left(a_{3(k-1)}, z\right)$. Since, we have at least $\left(2^{3 k-2}-\right.$ $\left.2^{k}\right) f(G)$ pebbles on the vertices of $\left(A_{1} \cup A_{2}\right) \times G$. By Lemma 3.2, we can move at least $\left(2^{k-1}-1\right)$ pebbles to the vertex $\left(a_{2(k-1)}, z\right)$. Then we can put one pebble to the target vertex $v=\left(a_{3(k-1)}, z\right)$.

Subcase 2(b). Let $v \in\left\{y, a_{3(k-1)}\right\} \times G$.

Without loss of generality, assume that $v \in\{y\} \times G$. Now we have two subgraphs K : $\left\{a_{k}, \ldots, y\right\} \times G$ and $L:\left\{b_{k}, \ldots, y\right\} \times G$ which are isomorphic to $P_{2(k-1)} \times G$. Suppose $p(K) \geq$ $2^{2(k-2)} f(G)$ or $p(L) \geq 2^{2(k-2)} f(G)$. Then we can reach the target. Otherwise, assume that $p(K)<2^{2(k-2)} f(G)$ or $p(L)<2^{2(k-2)} f(G)$. Without loss of generality assume that all the pebbles are distributed only on the vertices of $A_{1} \times G$. Then by Lemma 3.2, we can move at
least $\left(2^{k-1}-1\right)$ pebbles to the vertex $\left(a_{2(k-1)}, z\right)$ by using exactly $\left(2^{3 k-2}-2^{k}\right) f(G)$ pebbles. But the number of pebbles retained on $A_{1} \times G$ is at least $2^{k} f(G)$. Therefore we can move an additional pebble to the vertex $\left(a_{2(k-1)}, z\right)$. Now, by using the subgraph K we can move a pebble to the vertex (y, z).

Theorem 4.3. Let $Z Z_{n}\left(C_{2 k}\right)$ be the zig-zag chain graph of n copies of even cycles and let G be the graph with $2-$ pebbling property. Then

$$
f\left(Z Z_{n}\left(C_{2 k}\right) \times G\right) \leq f\left(Z Z_{n}\left(C_{2 k}\right)\right) f(G)
$$

Proof. We prove this theorem by induction on n. For $n=2$ and $n=3$, the result follows from Theorem 4.1 and Theorem 4.2. Assume that the result is true for all $n^{\prime}<n$. Consider the graph $Z Z_{n}\left(C_{2 k}\right)$ with at least $\left(2^{n(k-1)+1}\right) f(G)$ pebbles on its vertices. Let $v \in A_{t} \times G, 1 \leq t \leq n$. We consider the following cases:

Case 1. Let $v \in A_{t} \times G, 1<t<n$.

The graph $Z Z_{n}\left(C_{2 k}\right) \times G$ can be partitioned into two subgraphs say, S_{1} and S_{2}, where $S_{1} \cong Z Z_{p}\left(C_{2 k}\right) \times G$ and $S_{2} \cong Z Z_{s}\left(C_{2 k}\right) \times G$. Here, $n=s+p-1$. Clearly, $S_{1} \cap$ $S_{2} \cong A_{t} \times G$. Suppose $p\left(S_{1}\right) \geq 2^{p(k-1)+1} f(G)$.Then we are done. Therefore assume that $p\left(S_{1}\right)<2^{p(k-1)+1} f(G)$. Then the number of pebbles retained on S_{2} is at least $2^{s(k-1)+1} f(G)$ which implies $p\left(S_{2}\right) \geq 2^{s(k-1)+1} f(G)$. Then by induction we can reach the target vertex.

Case 2. Let $v \in A_{1} \times \operatorname{Gor} A_{n} \times G$.
Without loss of generality, assume that $v \in A_{n} \times G$ and $p\left(A_{n} \times G\right)<2^{k} f(G)$. Then the number of pebbles retained on $\left(A_{1} \cup \ldots \cup A_{n-1}\right) \times G$ is at least $\left(2^{n(k-1)+1}-2^{k}\right) f(G)$. We consider the following subcases:

Subcase 2(a). Let $v \in\left\{V\left(A_{n}\right)-\left\{y, b_{n(k-1)}\right\}\right\} \times G$.
Let us take $v=\left(a_{n(k-1)}, z\right)$. Since $p\left(A_{1} \cup \ldots \cup A_{n-1}\right) \geq\left(2^{n(k-1)+1}-2^{k}\right) f(G)$. Then by Lemma 3.3, we can move at least $\left(2^{k-1}-1\right)$ pebbles to $\left\{a_{(n-1)(k-1)}\right\} \times G$. Then we can reach the target.

Subcase 2(b). Let $v \in\left\{y, b_{n(k-1)}\right\} \times G$.
Without loss of generality, assume that $v=(y, z)$. We have two subgraphs say, $X:\left\{a_{k}, \ldots, a_{n(k-1)}\right\} \times$ G and $Y:\left\{b_{k}, \ldots, b_{n(k-1)}\right\} \times G$. Suppose $p(X) \geq 2^{n(k-1)-k+1}$ and $p(Y) \geq 2^{n(k-1)-k+1}$. Then we can move a pebble to the target vertex. Therefore assume that $p(X)<2^{n(k-1)-k+1}$ and $p(Y)<2^{n(k-1)-k+1}$. Without loss of generality, assume that all the pebbles are distributed only on the vertices of $A_{1} \times G$. Then by Lemma 3.3, we can move at least $\left(2^{(n-1) k-n+1}-1\right)$ pebbles to $\left(a_{k}, z\right)$ by using exactly $2^{k}\left(2^{(n-1) k-n+1}-1\right) f(G)$ pebbles. Now, we have at least $2^{k} f(G)$ pebbles retained on $A_{1} \times G$. By using Theorem 2.6 we can move additional pebble to
the vertex $\left(a_{k}, z\right)$. Then by Theorem 2.2, we can move one pebble to the vertex (y, z) through the subgraph X.

Acknowledgments

The author wish to thank God.

References

[1] F.R.K. Chung, Pebbling in hypercubes, SIAMJ. Disc. Math., 2(4), (1989), 467-472.
[2] Z.T. Gao, J.H. Yin and W.Y. Li, Graham's pebbling conjecture on the product of generalized friendship graphs, Appl. Math. J. Chinese Univ. Ser.A, 23, (2008), 487-491.
[3] Z. T. Gao and J. H. Yin, On the t-pebbling number and the 2t-pebbling property of graphs, Discrete Applied Mathematics, 161, (2013), 999-1005.
[4] Gary Chartrand and Lesniak, Graphs and digraphs, Fourth edition, CRC Press, Boca Raton, (2005).
[5] D.S. Herscovici, and A.W. Higgins, The pebbling number of $C_{5} \times C_{5}$, Disc.Math., 187(13), (1998), 123-135.
[6] D. S. Herscovici, Graham's pebbling conjecture on products of cycles, J. Graph Theory, 42, (2003), 141-154.
[7] A. Lourdusamy, t-pebbling the product of graphs, Acta. Cienc. Indica, XXXII(1), (2006), 171-176.
[8] A. Lourdusamy and A.P. Tharani, On t-pebbling graphs, Utilitas Math., 87, (2012), 331-342.
[9] A. Lourdusamy, S.S. Jeyaseelan and A.P. Tharani, t-pebbling the product of fan graphs and the product of wheel graphs, International Mathematical Forum, 32, (2009), 1573-1585.
[10] A. Lourdusamy and J. Jenifer Steffi, t-pebbling on zig-zag chain graph of even cycles, Sciencia Acta Xaveriana, 8(1), (2017), 91-100.
[11] S.S. Wang, Pebbling and Graham's conjecture, Discrete Math., 226, (2001), 431-438.

